Section 1.2 Finding Limits Graphically and Numerically
Informal definition of limit: If $f(x)$ become arbitrarily close to a single number L as x approaches c from either side, the limit of $f(x)$ as x approaches c is L.

The limit is written as

$$
\lim _{x \rightarrow c} f(x)=L
$$

Complete the tables and use the result to estimate the limits. Use a graphing utility to graph the functions and confirm your results.
Ex. 1

$$
\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-4}=\frac{1}{4}=0.25
$$

x	1.9	1.99	1.999	2.001	2.01	2.1
$f(x)$	0.356	0.251	0.250	0.250	0.249	0.244

Rounded to the nearest thousand hs

Ex. 2

$$
\lim _{x \rightarrow-5} \frac{\sqrt{4-x}-3}{x+5}=-\frac{1}{6}=-0.1 \overline{6}
$$

x	-5.1	-5.01	-5.001	-4.999	-4.99	-4.9
$f(x)$	-0.166	-0.167	-0.167	-0.167	-0.167	-0.167

Rom bed to the rearrest thousandths

Ex. 3

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1
$$

x	-0.1	-0.01	-0.001	0.001	0.01	0.1
$f(x)$	0.998	1	1	1	1	0.998

Common Types of Behavior Associated with Nonexistence of a Limit

1. $f(x)$ approaches a different number from the right side of c than it approaches from the left side.
2. $f(x)$ increases or decreases without bound as x approaches c.
3. $f(x)$ oscillates between two fixed values as x approaches c.

Use the graph of f to find the following limits and function values. If the limit does not exist, explain why.

Ex. 4 (a) $\lim _{x \rightarrow 4} f(x)$, (b) $\lim _{x \rightarrow 1} f(x)$, (c) $f(1)$ and (d) $f(4)$,
(a) $\lim _{x \rightarrow 4} f(x)=2$
(b) $\lim _{x \rightarrow 1} f(x)=$ Does Not Exist

$$
\lim _{x \rightarrow 1^{-}} f(x) \neq \lim _{x \rightarrow 1^{+}} f(x)
$$

(c) $f(1)=$

(d) $f(4)=$ tu den

Use the graph of g to find the following limits and function values. If the limit does not exist, explain why.

$$
\begin{aligned}
& \text { limit as } \\
& \text { an routput } \\
& \text { Expectation" } \\
& \text { near a } \\
& \text { particular } \\
& \text { input value }
\end{aligned}
$$

Ex. 5 (a) $\lim _{x \rightarrow 3} g(x)$, (b) $\lim _{x \rightarrow 0} g(x)$, (c) $\lim _{x \rightarrow-4} g(x)$, d) $\lim _{x \rightarrow-3} g(x)$,
(e) $g(0)$, (f) $g(-3)$, and (g) $g(-4)$,
(a) $\lim _{x \rightarrow 3} g(x)=-3$
(b) $\lim _{x \rightarrow 0} g(x)=$ Does Not Exist

$$
\lim _{x \rightarrow 0^{-}} g(x) \neq \lim _{x \rightarrow 0^{+}} g(x)
$$

(c) $\lim _{x \rightarrow-4} g(x)=2$
(d) $\lim _{x \rightarrow-3} g(x)=0$
(e) $g(0)=5$
(f) $g(-3)=0$
(g) $g(-4)=\bigcirc$

Use the graph to find the following limit. If the limit does not exist, explain why.
$\lim _{x \rightarrow 0} \cos \frac{1}{x}$

Ex. $5 \lim _{x \rightarrow 0} \cos \left(\frac{1}{x}\right)$

The limit does not exist
due to oscillation.

Definition of Limit

Let f be a function defined on an open interval containing c (except possibly at $c)$ and let L be a real number. The statement

$$
\lim _{x \rightarrow c} f(x)=L
$$

means that for each $\varepsilon>0$ there exists a $\delta>0$ such that if

$$
0<|x-c|<\delta, \quad \text { then } \quad|f(x)-L|<\varepsilon
$$

The $\varepsilon-\delta$ definition of the limit of $f(x)$ as x approaches c

