Section 1.2 Finding Limits Graphically and Numerically

Informal definition of limit: If f(x) become arbitrarily close to a single number *L* as *x* approaches *c* from either side, the **limit** of f(x) as *x* approaches *c* is *L*.

 $\lim_{x \to c} f(x) = L.$

The limit is written as

Complete the tables and use the result to estimate the limits. Use a graphing utility to graph the functions and confirm your results. **Ex.1**

$\lim_{x \to 2} \frac{x-2}{x^2-4} = \frac{1}{4} = 0.25$											
x	1.9	1.99	1.999	2.001	2.01	2.1					
f(x)	0.256	0,251	0.250	0.250	0.249	0.244					
Romand to the rearest thousand this											

Ex.2

$\lim_{x \to -5} \frac{\sqrt{4-x}-3}{x+5} = \frac{-1}{6} = -0.16$											
x	-5.1	-5.01	-5.001	-4.999	-4.99	-4.9					
f(x)	-0.(66	-0.167	-0.167	-0.167	-0,167-	-0.167					
Romand to the rearest thrussandths											

Common Types of Behavior Associated with Nonexistence of a Limit

- 1. f(x) approaches a different number from the right side of *c* than it approaches from the left side.
- **2.** f(x) increases or decreases without bound as x approaches c.
- 3. f(x) oscillates between two fixed values as x approaches c.

Use the graph of f to find the following limits and function values. If the limit does not exist, explain why.

(b)
$$\lim_{x \to 1} f(x) = Does Not Exist
 $\lim_{x \to 1^-} f(x) \neq \lim_{x \to 1^+} f(x)$$$

(c) f(1) = 2(d) f(4) = 1 f(4) = 1 Use the graph of g to find the following limits and function values. If the limit does not exist, explain why.

Ex.5 (a) $\lim_{x \to 3} g(x)$, (b) $\lim_{x \to 0} g(x)$, (c) $\lim_{x \to -4} g(x)$, d) $\lim_{x \to -3} g(x)$, (e) g(0), (f) g(-3), and (g) g(-4),

(a)
$$\lim_{x \to 3} g(x) = - >$$

(b)
$$\lim_{x \to 0} g(x) = \text{Does Not Exist}$$

 $\lim_{x \to 0^{-}} g(x) \neq \lim_{x \to 0^{-}} g(x) = \sum$

(d)
$$\lim_{x \to -3} g(x) = \bigcirc$$

- (e) g(0) = 5
- (f) $g(-3) = \bigcirc$

(g)
$$g(-4) = \bigcirc$$

Use the graph to find the following limit. If the limit does not exist, explain why.

Definition of Limit

Let f be a function defined on an open interval containing c (except possibly at c) and let L be a real number. The statement

$$\lim_{x \to c} f(x) = L$$

means that for each $\varepsilon > 0$ there exists a $\delta > 0$ such that if

$$0 < |x - c| < \delta$$
, then $|f(x) - L| < \varepsilon$.

The ε - δ definition of the limit of f(x) as x approaches c